Appendix B - Backup on object stores
Warning
As of CloudNativePG 1.26, native Barman Cloud support is deprecated in favor of the Barman Cloud Plugin. This page has been moved to the appendix for reference purposes. While the native integration remains functional for now, we strongly recommend beginning a gradual migration to the plugin-based interface after appropriate testing. For guidance, see Migrating from Built-in CloudNativePG Backup.
CloudNativePG natively supports online/hot backup of PostgreSQL clusters through continuous physical backup and WAL archiving on an object store. This means that the database is always up (no downtime required) and that Point In Time Recovery is available.
The operator can orchestrate a continuous backup infrastructure
that is based on the Barman Cloud tool. Instead
of using the classical architecture with a Barman server, which
backs up many PostgreSQL instances, the operator relies on the
barman-cloud-wal-archive
, barman-cloud-check-wal-archive
,
barman-cloud-backup
, barman-cloud-backup-list
, and
barman-cloud-backup-delete
tools. As a result, base backups will
be tarballs. Both base backups and WAL files can be compressed
and encrypted.
For this, it is required to use an image with barman-cli-cloud
included.
You can use the image ghcr.io/cloudnative-pg/postgresql
for this scope,
as it is composed of a community PostgreSQL image and the latest
barman-cli-cloud
package.
Important
Always ensure that you are running the latest version of the operands in your system to take advantage of the improvements introduced in Barman cloud (as well as improve the security aspects of your cluster).
A backup is performed from a primary or a designated primary instance in a
Cluster
(please refer to
replica clusters
for more information about designated primary instances), or alternatively
on a standby.
Common object stores
If you are looking for a specific object store such as AWS S3, Microsoft Azure Blob Storage, Google Cloud Storage, or a compatible provider, please refer to Appendix C - Common object stores for backups.
WAL archiving
WAL archiving is the process that feeds a WAL archive in CloudNativePG.
The WAL archive is defined in the .spec.backup.barmanObjectStore
stanza of
a Cluster
resource.
Info
Please refer to BarmanObjectStoreConfiguration
in the barman-cloud API for a full list of options.
If required, you can choose to compress WAL files as soon as they are uploaded and/or encrypt them:
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
[...]
spec:
backup:
barmanObjectStore:
[...]
wal:
compression: gzip
encryption: AES256
You can configure the encryption directly in your bucket, and the operator will use it unless you override it in the cluster configuration.
PostgreSQL implements a sequential archiving scheme, where the
archive_command
will be executed sequentially for every WAL
segment to be archived.
Important
By default, CloudNativePG sets archive_timeout
to 5min
, ensuring
that WAL files, even in case of low workloads, are closed and archived
at least every 5 minutes, providing a deterministic time-based value for
your Recovery Point Objective (RPO). Even though you change the value
of the archive_timeout
setting in the PostgreSQL configuration,
our experience suggests that the default value set by the operator is
suitable for most use cases.
When the bandwidth between the PostgreSQL instance and the object store allows archiving more than one WAL file in parallel, you can use the parallel WAL archiving feature of the instance manager like in the following example:
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
[...]
spec:
backup:
barmanObjectStore:
[...]
wal:
compression: gzip
maxParallel: 8
encryption: AES256
In the previous example, the instance manager optimizes the WAL archiving process by archiving in parallel at most eight ready WALs, including the one requested by PostgreSQL.
When PostgreSQL will request the archiving of a WAL that has already been archived by the instance manager as an optimization, that archival request will be just dismissed with a positive status.
Retention policies
CloudNativePG can manage the automated deletion of backup files from the backup object store, using retention policies based on the recovery window.
Internally, the retention policy feature uses barman-cloud-backup-delete
with --retention-policy “RECOVERY WINDOW OF {{ retention policy value }} {{ retention policy unit }}”
.
For example, you can define your backups with a retention policy of 30 days as follows:
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
[...]
spec:
backup:
barmanObjectStore:
destinationPath: "<destination path here>"
s3Credentials:
accessKeyId:
name: aws-creds
key: ACCESS_KEY_ID
secretAccessKey:
name: aws-creds
key: ACCESS_SECRET_KEY
retentionPolicy: "30d"
There's more ...
The recovery window retention policy is focused on the concept of
Point of Recoverability (PoR
), a moving point in time determined by
current time - recovery window
. The first valid backup is the first
available backup before PoR
(in reverse chronological order).
CloudNativePG must ensure that we can recover the cluster at
any point in time between PoR
and the latest successfully archived WAL
file, starting from the first valid backup. Base backups that are older
than the first valid backup will be marked as obsolete and permanently
removed after the next backup is completed.
Compression algorithms
CloudNativePG by default archives backups and WAL files in an
uncompressed fashion. However, it also supports the following compression
algorithms via barman-cloud-backup
(for backups) and
barman-cloud-wal-archive
(for WAL files):
- bzip2
- gzip
- lz4
- snappy
- xz
- zstd
The compression settings for backups and WALs are independent. See the DataBackupConfiguration and WALBackupConfiguration sections in the barman-cloud API reference.
It is important to note that archival time, restore time, and size change between the algorithms, so the compression algorithm should be chosen according to your use case.
The Barman team has performed an evaluation of the performance of the supported algorithms for Barman Cloud. The following table summarizes a scenario where a backup is taken on a local MinIO deployment. The Barman GitHub project includes a deeper analysis.
Compression | Backup Time (ms) | Restore Time (ms) | Uncompressed size (MB) | Compressed size (MB) | Approx ratio |
---|---|---|---|---|---|
None | 10927 | 7553 | 395 | 395 | 1:1 |
bzip2 | 25404 | 13886 | 395 | 67 | 5.9:1 |
gzip | 116281 | 3077 | 395 | 91 | 4.3:1 |
snappy | 8134 | 8341 | 395 | 166 | 2.4:1 |
Tagging of backup objects
Barman 2.18 introduces support for tagging backup resources when saving them in
object stores via barman-cloud-backup
and barman-cloud-wal-archive
. As a
result, if your PostgreSQL container image includes Barman with version 2.18 or
higher, CloudNativePG enables you to specify tags as key-value pairs
for backup objects, namely base backups, WAL files and history files.
You can use two properties in the .spec.backup.barmanObjectStore
definition:
tags
: key-value pair tags to be added to backup objects and archived WAL file in the backup object storehistoryTags
: key-value pair tags to be added to archived history files in the backup object store
The excerpt of a YAML manifest below provides an example of usage of this feature:
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
[...]
spec:
backup:
barmanObjectStore:
[...]
tags:
backupRetentionPolicy: "expire"
historyTags:
backupRetentionPolicy: "keep"
Extra options for the backup and WAL commands
You can append additional options to the barman-cloud-backup
and barman-cloud-wal-archive
commands by using
the additionalCommandArgs
property in the
.spec.backup.barmanObjectStore.data
and .spec.backup.barmanObjectStore.wal
sections respectively.
These properties are lists of strings that will be appended to the
barman-cloud-backup
and barman-cloud-wal-archive
commands.
For example, you can use the --read-timeout=60
to customize the connection
reading timeout.
For additional options supported by barman-cloud-backup
and barman-cloud-wal-archive
commands you can refer to the
official barman documentation here.
If an option provided in additionalCommandArgs
is already present in the
declared options in its section (.spec.backup.barmanObjectStore.data
or .spec.backup.barmanObjectStore.wal
), the extra option will be
ignored.
The following is an example of how to use this property:
For backups:
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
[...]
spec:
backup:
barmanObjectStore:
[...]
data:
additionalCommandArgs:
- "--min-chunk-size=5MB"
- "--read-timeout=60"
For WAL files:
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
[...]
spec:
backup:
barmanObjectStore:
[...]
wal:
additionalCommandArgs:
- "--max-concurrency=1"
- "--read-timeout=60"
Recovery from an object store
You can recover from a backup created by Barman Cloud and stored on a supported
object store. After you define the external cluster, including all the required
configuration in the barmanObjectStore
section, you need to reference it in
the .spec.recovery.source
option.
This example defines a recovery object store in a blob container in Azure:
apiVersion: postgresql.cnpg.io/v1
kind: Cluster
metadata:
name: cluster-restore
spec:
[...]
superuserSecret:
name: superuser-secret
bootstrap:
recovery:
source: clusterBackup
externalClusters:
- name: clusterBackup
barmanObjectStore:
destinationPath: https://STORAGEACCOUNTNAME.blob.core.windows.net/CONTAINERNAME/
azureCredentials:
storageAccount:
name: recovery-object-store-secret
key: storage_account_name
storageKey:
name: recovery-object-store-secret
key: storage_account_key
wal:
maxParallel: 8
The previous example assumes that the application database and its owning user
are named app
by default. If the PostgreSQL cluster being restored uses
different names, you must specify these names before exiting the recovery phase,
as documented in "Configure the application database".
Important
By default, the recovery
method strictly uses the name
of the
cluster in the externalClusters
section as the name of the main folder
of the backup data within the object store. This name is normally reserved
for the name of the server. You can specify a different folder name
using the barmanObjectStore.serverName
property.
Note
This example takes advantage of the parallel WAL restore feature, dedicating up to 8 jobs to concurrently fetch the required WAL files from the archive. This feature can appreciably reduce the recovery time. Make sure that you plan ahead for this scenario and correctly tune the value of this parameter for your environment. It will make a difference when you need it, and you will.