CloudNativePG Plugin
CloudNativePG provides a plugin for kubectl
to manage a cluster in Kubernetes.
Install
You can install the cnpg
plugin using a variety of methods.
Note
For air-gapped systems, installation via package managers, using previously downloaded files, may be a good option.
Via the installation script
curl -sSfL \
https://github.com/cloudnative-pg/cloudnative-pg/raw/main/hack/install-cnpg-plugin.sh | \
sudo sh -s -- -b /usr/local/bin
Using the Debian or RedHat packages
In the releases section of the GitHub repository, you can navigate to any release of interest (pick the same or newer release than your CloudNativePG operator), and in it you will find an Assets section. In that section are pre-built packages for a variety of systems. As a result, you can follow standard practices and instructions to install them in your systems.
Debian packages
For example, let's install the 1.18.1 release of the plugin, for an Intel based
64 bit server. First, we download the right .deb
file.
$ wget https://github.com/cloudnative-pg/cloudnative-pg/releases/download/v1.18.1/kubectl-cnpg_1.18.1_linux_x86_64.deb
Then, install from the local file using dpkg
:
$ dpkg -i kubectl-cnpg_1.18.1_linux_x86_64.deb
(Reading database ... 16102 files and directories currently installed.)
Preparing to unpack kubectl-cnpg_1.18.1_linux_x86_64.deb ...
Unpacking cnpg (1.18.1) over (1.18.1) ...
Setting up cnpg (1.18.1) ...
RPM packages
As in the example for .deb
packages, let's install the 1.18.1 release for an
Intel 64 bit machine. Note the --output
flag to provide a file name.
curl -L https://github.com/cloudnative-pg/cloudnative-pg/releases/download/v1.18.1/kubectl-cnpg_1.18.1_linux_x86_64.rpm \
--output kube-plugin.rpm
Then install with yum
, and you're ready to use:
$ yum --disablerepo=* localinstall kube-plugin.rpm
yum --disablerepo=* localinstall kube-plugin.rpm
Failed to set locale, defaulting to C.UTF-8
Dependencies resolved.
====================================================================================================
Package Architecture Version Repository Size
====================================================================================================
Installing:
cnpg x86_64 1.18.1-1 @commandline 14 M
Transaction Summary
====================================================================================================
Install 1 Package
Total size: 14 M
Installed size: 43 M
Is this ok [y/N]: y
Using Krew
If you already have Krew installed, you can simply run:
kubectl krew install cnpg
When a new version of the plugin is released, you can update the existing installation with:
kubectl krew update
kubectl krew upgrade cnpg
Supported Architectures
CloudNativePG Plugin is currently built for the following operating system and architectures:
- Linux
- amd64
- arm 5/6/7
- arm64
- s390x
- ppc64le
- macOS
- amd64
- arm64
- Windows
- 386
- amd64
- arm 5/6/7
- arm64
Use
Once the plugin was installed and deployed, you can start using it like this:
kubectl cnpg <command> <args...>
Generation of installation manifests
The cnpg
plugin can be used to generate the YAML manifest for the
installation of the operator. This option would typically be used if you want
to override some default configurations such as number of replicas,
installation namespace, namespaces to watch, and so on.
For details and available options, run:
kubectl cnpg install generate --help
The main options are:
-n
: the namespace in which to install the operator (by default:cnpg-system
)--replicas
: number of replicas in the deployment--version
: minor version of the operator to be installed, such as1.17
. If a minor version is specified, the plugin will install the latest patch version of that minor version. If no version is supplied the plugin will install the latestMAJOR.MINOR.PATCH
version of the operator.--watch-namespace
: comma separated string containing the namespaces to watch (by default all namespaces)
An example of the generate
command, which will generate a YAML manifest that
will install the operator, is as follows:
kubectl cnpg install generate \
-n king \
--version 1.17 \
--replicas 3 \
--watch-namespace "albert, bb, freddie" \
> operator.yaml
The flags in the above command have the following meaning:
- -n king
install the CNPG operator into the king
namespace
- --version 1.17
install the latest patch version for minor version 1.17
- --replicas 3
install the operator with 3 replicas
- --watch-namespaces "albert, bb, freddie"
have the operator watch for
changes in the albert
, bb
and freddie
namespaces only
Status
The status
command provides an overview of the current status of your
cluster, including:
- general information: name of the cluster, PostgreSQL's system ID, number of instances, current timeline and position in the WAL
- backup: point of recoverability, and WAL archiving status as returned by
the
pg_stat_archiver
view from the primary - or designated primary in the case of a replica cluster - streaming replication: information taken directly from the
pg_stat_replication
view on the primary instance - instances: information about each Postgres instance, taken directly by each
instance manager; in the case of a standby, the
Current LSN
field corresponds to the latest write-ahead log location that has been replayed during recovery (replay LSN).
Important
The status information above is taken at different times and at different
locations, resulting in slightly inconsistent returned values. For example,
the Current Write LSN
location in the main header, might be different
from the Current LSN
field in the instances status as it is taken at
two different time intervals.
kubectl cnpg status sandbox
Cluster in healthy state
Name: sandbox
Namespace: default
System ID: 7039966298120953877
PostgreSQL Image: ghcr.io/cloudnative-pg/postgresql:15.3
Primary instance: sandbox-2
Instances: 3
Ready instances: 3
Current Write LSN: 3AF/EAFA6168 (Timeline: 8 - WAL File: 00000008000003AF00000075)
Continuous Backup status
First Point of Recoverability: Not Available
Working WAL archiving: OK
Last Archived WAL: 00000008000003AE00000079 @ 2021-12-14T10:16:29.340047Z
Last Failed WAL: -
Certificates Status
Certificate Name Expiration Date Days Left Until Expiration
---------------- --------------- --------------------------
cluster-example-ca 2022-05-05 15:02:42 +0000 UTC 87.23
cluster-example-replication 2022-05-05 15:02:42 +0000 UTC 87.23
cluster-example-server 2022-05-05 15:02:42 +0000 UTC 87.23
Streaming Replication status
Name Sent LSN Write LSN Flush LSN Replay LSN Write Lag Flush Lag Replay Lag State Sync State Sync Priority
---- -------- --------- --------- ---------- --------- --------- ---------- ----- ---------- -------------
sandbox-1 3AF/EB0524F0 3AF/EB011760 3AF/EAFEDE50 3AF/EAFEDE50 00:00:00.004461 00:00:00.007901 00:00:00.007901 streaming quorum 1
sandbox-3 3AF/EB0524F0 3AF/EB030B00 3AF/EB030B00 3AF/EB011760 00:00:00.000977 00:00:00.004194 00:00:00.008252 streaming quorum 1
Instances status
Name Database Size Current LSN Replication role Status QoS Manager Version
---- ------------- ----------- ---------------- ------ --- ---------------
sandbox-1 302 GB 3AF/E9FFFFE0 Standby (sync) OK Guaranteed 1.11.0
sandbox-2 302 GB 3AF/EAFA6168 Primary OK Guaranteed 1.11.0
sandbox-3 302 GB 3AF/EBAD5D18 Standby (sync) OK Guaranteed 1.11.0
You can also get a more verbose version of the status by adding
--verbose
or just -v
kubectl cnpg status sandbox --verbose
Cluster in healthy state
Name: sandbox
Namespace: default
System ID: 7039966298120953877
PostgreSQL Image: ghcr.io/cloudnative-pg/postgresql:15.3
Primary instance: sandbox-2
Instances: 3
Ready instances: 3
Current Write LSN: 3B1/61DE3158 (Timeline: 8 - WAL File: 00000008000003B100000030)
PostgreSQL Configuration
archive_command = '/controller/manager wal-archive --log-destination /controller/log/postgres.json %p'
archive_mode = 'on'
archive_timeout = '5min'
checkpoint_completion_target = '0.9'
checkpoint_timeout = '900s'
cluster_name = 'sandbox'
dynamic_shared_memory_type = 'sysv'
full_page_writes = 'on'
hot_standby = 'true'
jit = 'on'
listen_addresses = '*'
log_autovacuum_min_duration = '1s'
log_checkpoints = 'on'
log_destination = 'csvlog'
log_directory = '/controller/log'
log_filename = 'postgres'
log_lock_waits = 'on'
log_min_duration_statement = '1000'
log_rotation_age = '0'
log_rotation_size = '0'
log_statement = 'ddl'
log_temp_files = '1024'
log_truncate_on_rotation = 'false'
logging_collector = 'on'
maintenance_work_mem = '2GB'
max_connections = '1000'
max_parallel_workers = '32'
max_replication_slots = '32'
max_wal_size = '15GB'
max_worker_processes = '32'
pg_stat_statements.max = '10000'
pg_stat_statements.track = 'all'
port = '5432'
shared_buffers = '16GB'
shared_memory_type = 'sysv'
shared_preload_libraries = 'pg_stat_statements'
ssl = 'on'
ssl_ca_file = '/controller/certificates/client-ca.crt'
ssl_cert_file = '/controller/certificates/server.crt'
ssl_key_file = '/controller/certificates/server.key'
synchronous_standby_names = 'ANY 1 ("sandbox-1","sandbox-3")'
unix_socket_directories = '/controller/run'
wal_keep_size = '512MB'
wal_level = 'logical'
wal_log_hints = 'on'
cnpg.config_sha256 = '3cfa683e23fe513afaee7c97b50ce0628e0cc634bca8b096517538a9a4428efc'
PostgreSQL HBA Rules
# Grant local access
local all all peer map=local
# Require client certificate authentication for the streaming_replica user
hostssl postgres streaming_replica all cert
hostssl replication streaming_replica all cert
hostssl all cnpg_pooler_pgbouncer all cert
# Otherwise use the default authentication method
host all all all scram-sha-256
Continuous Backup status
First Point of Recoverability: Not Available
Working WAL archiving: OK
Last Archived WAL: 00000008000003B00000001D @ 2021-12-14T10:20:42.272815Z
Last Failed WAL: -
Streaming Replication status
Name Sent LSN Write LSN Flush LSN Replay LSN Write Lag Flush Lag Replay Lag State Sync State Sync Priority
---- -------- --------- --------- ---------- --------- --------- ---------- ----- ---------- -------------
sandbox-1 3B1/61E26448 3B1/61DF82F0 3B1/61DF82F0 3B1/61DF82F0 00:00:00.000333 00:00:00.000333 00:00:00.005484 streaming quorum 1
sandbox-3 3B1/61E26448 3B1/61E26448 3B1/61DF82F0 3B1/61DF82F0 00:00:00.000756 00:00:00.000756 00:00:00.000756 streaming quorum 1
Instances status
Name Database Size Current LSN Replication role Status QoS Manager Version
---- ------------- ----------- ---------------- ------ --- ---------------
sandbox-1 3B1/610204B8 Standby (sync) OK Guaranteed 1.11.0
sandbox-2 3B1/61DE3158 Primary OK Guaranteed 1.11.0
sandbox-3 3B1/62618470 Standby (sync) OK Guaranteed 1.11.0
The command also supports output in yaml
and json
format.
Promote
The meaning of this command is to promote
a pod in the cluster to primary, so you
can start with maintenance work or test a switch-over situation in your cluster
kubectl cnpg promote cluster-example cluster-example-2
Or you can use the instance node number to promote
kubectl cnpg promote cluster-example 2
Certificates
Clusters created using the CloudNativePG operator work with a CA to sign a TLS authentication certificate.
To get a certificate, you need to provide a name for the secret to store the credentials, the cluster name, and a user for this certificate
kubectl cnpg certificate cluster-cert --cnpg-cluster cluster-example --cnpg-user appuser
After the secrete it's created, you can get it using kubectl
kubectl get secret cluster-cert
And the content of the same in plain text using the following commands:
kubectl get secret cluster-cert -o json | jq -r '.data | map(@base64d) | .[]'
Restart
The kubectl cnpg restart
command can be used in two cases:
-
requesting the operator to orchestrate a rollout restart for a certain cluster. This is useful to apply configuration changes to cluster dependent objects, such as ConfigMaps containing custom monitoring queries.
-
request a single instance restart, either in-place if the instance is the cluster's primary or deleting and recreating the pod if it is a replica.
# this command will restart a whole cluster in a rollout fashion
kubectl cnpg restart [clusterName]
# this command will restart a single instance, according to the policy above
kubectl cnpg restart [clusterName] [pod]
If the in-place restart is requested but the change cannot be applied without a switchover, the switchover will take precedence over the in-place restart. A common case for this will be a minor upgrade of PostgreSQL image.
Note
If you want ConfigMaps and Secrets to be automatically reloaded
by instances, you can add a label with key cnpg.io/reload
to it.
Reload
The kubectl cnpg reload
command requests the operator to trigger a reconciliation
loop for a certain cluster. This is useful to apply configuration changes
to cluster dependent objects, such as ConfigMaps containing custom monitoring queries.
The following command will reload all configurations for a given cluster:
kubectl cnpg reload [cluster_name]
Maintenance
The kubectl cnpg maintenance
command helps to modify one or more clusters
across namespaces and set the maintenance window values, it will change
the following fields:
- .spec.nodeMaintenanceWindow.inProgress
- .spec.nodeMaintenanceWindow.reusePVC
Accepts as argument set
and unset
using this to set the
inProgress
to true
in case set
and to false
in case of unset
.
By default, reusePVC
is always set to false
unless the --reusePVC
flag is passed.
The plugin will ask for a confirmation with a list of the cluster to modify and their new values, if this is accepted this action will be applied to all the cluster in the list.
If you want to set in maintenance all the PostgreSQL in your Kubernetes cluster, just need to write the following command:
kubectl cnpg maintenance set --all-namespaces
And you'll have the list of all the cluster to update
The following are the new values for the clusters
Namespace Cluster Name Maintenance reusePVC
--------- ------------ ----------- --------
default cluster-example true false
default pg-backup true false
test cluster-example true false
Do you want to proceed? [y/n]: y
Report
The kubectl cnpg report
command bundles various pieces
of information into a ZIP file.
It aims to provide the needed context to debug problems
with clusters in production.
It has two sub-commands: operator
and cluster
.
report Operator
The operator
sub-command requests the operator to provide information
regarding the operator deployment, configuration and events.
Important
All confidential information in Secrets and ConfigMaps is REDACTED.
The Data map will show the keys but the values will be empty.
The flag -S
/ --stopRedaction
will defeat the redaction and show the
values. Use only at your own risk, this will share private data.
Note
By default, operator logs are not collected, but you can enable operator
log collection with the --logs
flag
- deployment information: the operator Deployment and operator Pod
- configuration: the Secrets and ConfigMaps in the operator namespace
- events: the Events in the operator namespace
- webhook configuration: the mutating and validating webhook configurations
- webhook service: the webhook service
- logs: logs for the operator Pod (optional, off by default) in JSON-lines format
The command will generate a ZIP file containing various manifest in YAML format
(by default, but settable to JSON with the -o
flag).
Use the -f
flag to name a result file explicitly. If the -f
flag is not used, a
default time-stamped filename is created for the zip file.
Note
The report plugin obeys kubectl
conventions, and will look for objects constrained
by namespace. The CNPG Operator will generally not be installed in the same
namespace as the clusters.
E.g. the default installation namespace is cnpg-system
kubectl cnpg report operator -n <namespace>
results in
Successfully written report to "report_operator_<TIMESTAMP>.zip" (format: "yaml")
With the -f
flag set:
kubectl cnpg report operator -n <namespace> -f reportRedacted.zip
Unzipping the file will produce a time-stamped top-level folder to keep the directory tidy:
unzip reportRedacted.zip
will result in:
Archive: reportRedacted.zip
creating: report_operator_<TIMESTAMP>/
creating: report_operator_<TIMESTAMP>/manifests/
inflating: report_operator_<TIMESTAMP>/manifests/deployment.yaml
inflating: report_operator_<TIMESTAMP>/manifests/operator-pod.yaml
inflating: report_operator_<TIMESTAMP>/manifests/events.yaml
inflating: report_operator_<TIMESTAMP>/manifests/validating-webhook-configuration.yaml
inflating: report_operator_<TIMESTAMP>/manifests/mutating-webhook-configuration.yaml
inflating: report_operator_<TIMESTAMP>/manifests/webhook-service.yaml
inflating: report_operator_<TIMESTAMP>/manifests/cnpg-ca-secret.yaml
inflating: report_operator_<TIMESTAMP>/manifests/cnpg-webhook-cert.yaml
If you activated the --logs
option, you'd see an extra subdirectory:
Archive: report_operator_<TIMESTAMP>.zip
<snipped …>
creating: report_operator_<TIMESTAMP>/operator-logs/
inflating: report_operator_<TIMESTAMP>/operator-logs/cnpg-controller-manager-66fb98dbc5-pxkmh-logs.jsonl
Note
The plugin will try to get the PREVIOUS operator's logs, which is helpful when investigating restarted operators. In all cases, it will also try to get the CURRENT operator logs. If current and previous logs are available, it will show them both.
====== Begin of Previous Log =====
2023-03-28T12:56:41.251711811Z {"level":"info","ts":"2023-03-28T12:56:41Z","logger":"setup","msg":"Starting CloudNativePG Operator","version":"1.19.1","build":{"Version":"1.19.0+dev107","Commit":"cc9bab17","Date":"2023-03-28"}}
2023-03-28T12:56:41.251851909Z {"level":"info","ts":"2023-03-28T12:56:41Z","logger":"setup","msg":"Starting pprof HTTP server","addr":"0.0.0.0:6060"}
<snipped …>
====== End of Previous Log =====
2023-03-28T12:57:09.854306024Z {"level":"info","ts":"2023-03-28T12:57:09Z","logger":"setup","msg":"Starting CloudNativePG Operator","version":"1.19.1","build":{"Version":"1.19.0+dev107","Commit":"cc9bab17","Date":"2023-03-28"}}
2023-03-28T12:57:09.854363943Z {"level":"info","ts":"2023-03-28T12:57:09Z","logger":"setup","msg":"Starting pprof HTTP server","addr":"0.0.0.0:6060"}
If the operator hasn't been restarted, you'll still see the ====== Begin …
and ====== End …
guards, with no content inside.
You can verify that the confidential information is REDACTED by default:
cd report_operator_<TIMESTAMP>/manifests/
head cnpg-ca-secret.yaml
data:
ca.crt: ""
ca.key: ""
metadata:
creationTimestamp: "2022-03-22T10:42:28Z"
managedFields:
- apiVersion: v1
fieldsType: FieldsV1
fieldsV1:
With the -S
(--stopRedaction
) option activated, secrets are shown:
kubectl cnpg report operator -n <namespace> -f reportNonRedacted.zip -S
You'll get a reminder that you're about to view confidential information:
WARNING: secret Redaction is OFF. Use it with caution
Successfully written report to "reportNonRedacted.zip" (format: "yaml")
unzip reportNonRedacted.zip
head cnpg-ca-secret.yaml
data:
ca.crt: LS0tLS1CRUdJTiBD…
ca.key: LS0tLS1CRUdJTiBF…
metadata:
creationTimestamp: "2022-03-22T10:42:28Z"
managedFields:
- apiVersion: v1
fieldsType: FieldsV1
report Cluster
The cluster
sub-command gathers the following:
- cluster resources: the cluster information, same as
kubectl get cluster -o yaml
- cluster pods: pods in the cluster namespace matching the cluster name
- cluster jobs: jobs, if any, in the cluster namespace matching the cluster name
- events: events in the cluster namespace
- pod logs: logs for the cluster Pods (optional, off by default) in JSON-lines format
- job logs: logs for the Pods created by jobs (optional, off by default) in JSON-lines format
The cluster
sub-command accepts the -f
and -o
flags, as the operator
does.
If the -f
flag is not used, a default timestamped report name will be used.
Note that the cluster information does not contain configuration Secrets / ConfigMaps,
so the -S
is disabled.
Note
By default, cluster logs are not collected, but you can enable cluster
log collection with the --logs
flag
Usage:
kubectl cnpg report cluster <clusterName> [flags]
Note that, unlike the operator
sub-command, for the cluster
sub-command you
need to provide the cluster name, and very likely the namespace, unless the cluster
is in the default one.
kubectl cnpg report cluster example -f report.zip -n example_namespace
and then:
unzip report.zip
Archive: report.zip
creating: report_cluster_example_<TIMESTAMP>/
creating: report_cluster_example_<TIMESTAMP>/manifests/
inflating: report_cluster_example_<TIMESTAMP>/manifests/cluster.yaml
inflating: report_cluster_example_<TIMESTAMP>/manifests/cluster-pods.yaml
inflating: report_cluster_example_<TIMESTAMP>/manifests/cluster-jobs.yaml
inflating: report_cluster_example_<TIMESTAMP>/manifests/events.yaml
Remember that you can use the --logs
flag to add the pod and job logs to the ZIP.
kubectl cnpg report cluster example -n example_namespace --logs
will result in:
Successfully written report to "report_cluster_example_<TIMESTAMP>.zip" (format: "yaml")
unzip report_cluster_<TIMESTAMP>.zip
Archive: report_cluster_example_<TIMESTAMP>.zip
creating: report_cluster_example_<TIMESTAMP>/
creating: report_cluster_example_<TIMESTAMP>/manifests/
inflating: report_cluster_example_<TIMESTAMP>/manifests/cluster.yaml
inflating: report_cluster_example_<TIMESTAMP>/manifests/cluster-pods.yaml
inflating: report_cluster_example_<TIMESTAMP>/manifests/cluster-jobs.yaml
inflating: report_cluster_example_<TIMESTAMP>/manifests/events.yaml
creating: report_cluster_example_<TIMESTAMP>/logs/
inflating: report_cluster_example_<TIMESTAMP>/logs/cluster-example-full-1.jsonl
creating: report_cluster_example_<TIMESTAMP>/job-logs/
inflating: report_cluster_example_<TIMESTAMP>/job-logs/cluster-example-full-1-initdb-qnnvw.jsonl
inflating: report_cluster_example_<TIMESTAMP>/job-logs/cluster-example-full-2-join-tvj8r.jsonl
Destroy
The kubectl cnpg destroy
command helps remove an instance and all the
associated PVCs from a Kubernetes cluster.
The optional --keep-pvc
flag, if specified, allows you to keep the PVCs,
while removing all metadata.ownerReferences
that were set by the instance.
Additionally, the cnpg.io/pvcStatus
label on the PVCs will change from
ready
to detached
to signify that they are no longer in use.
Running again the command without the --keep-pvc
flag will remove the
detached PVCs.
Usage:
kubectl cnpg destroy [CLUSTER_NAME] [INSTANCE_ID]
The following example removes the cluster-example-2
pod and the associated
PVCs:
kubectl cnpg destroy cluster-example 2
Cluster hibernation
Sometimes you may want to suspend the execution of a CloudNativePG Cluster
while retaining its data, then resume its activity at a later time. We've
called this feature cluster hibernation.
Hibernation is only available via the kubectl cnpg hibernate [on|off]
commands.
Hibernating a CloudNativePG cluster means destroying all the resources generated by the cluster, except the PVCs that belong to the PostgreSQL primary instance.
You can hibernate a cluster with:
kubectl cnpg hibernate on <cluster-name>
This will:
- shutdown every PostgreSQL instance
- detach the PVCs containing the data of the primary instance, and annotate them with the latest database status and the latest cluster configuration
- delete the
Cluster
resource, including every generated resource - except the aforementioned PVCs
When hibernated, a CloudNativePG cluster is represented by just a group of
PVCs, in which the one containing the PGDATA
is annotated with the latest
available status, including content from pg_controldata
.
Warning
A cluster having fenced instances cannot be hibernated, as fencing is part of the hibernation procedure too.
In case of error the operator will not be able to revert the procedure. You can still force the operation with:
kubectl cnpg hibernate on cluster-example --force
A hibernated cluster can be resumed with:
kubectl cnpg hibernate off <cluster-name>
Once the cluster has been hibernated, it's possible to show the last configuration and the status that PostgreSQL had after it was shut down. That can be done with:
kubectl cnpg hibernate status <cluster-name>
Benchmarking the database with pgbench
Pgbench can be run against an existing PostgreSQL cluster with following command:
kubectl cnpg pgbench <cluster-name> -- --time 30 --client 1 --jobs 1
Refer to the Benchmarking pgbench section for more details.
Benchmarking the storage with fio
fio can be run on an existing storage class with following command:
kubectl cnpg fio <fio-job-name> -n <namespace>
Refer to the Benchmarking fio section for more details.
Requesting a new base backup
The kubectl cnpg backup
command requests a new physical base backup for
an existing Postgres cluster by creating a new Backup
resource.
The following example requests an on-demand backup for a given cluster:
kubectl cnpg backup [cluster_name]
The created backup will be named after the request time:
kubectl cnpg backup cluster-example
backup/cluster-example-20230121002300 created
Launching psql
The kubectl cnpg psql
command starts a new PostgreSQL interactive front-end
process (psql) connected to an existing Postgres cluster, as if you were running
it from the actual pod. This means that you will be using the postgres
user.
Important
As you will be connecting as postgres
user, in production environments this
method should be used with extreme care, by authorized personnel only.
kubectl cnpg psql cluster-example
psql (15.3 (Debian 15.3-1.pgdg110+1))
Type "help" for help.
postgres=#
By default, the command will connect to the primary instance. The user can
select to work against a replica by using the --replica
option:
kubectl cnpg psql --replica cluster-example
psql (15.3 (Debian 15.3-1.pgdg110+1))
Type "help" for help.
postgres=# select pg_is_in_recovery();
pg_is_in_recovery
-------------------
t
(1 row)
postgres=# \q
This command will start kubectl exec
, and the kubectl
executable must be
reachable in your PATH
variable to correctly work.
Snapshotting a Postgres cluster
The kubectl cnpg snapshot
creates consistent snapshots of a Postgres
Cluster
by:
- choosing a replica Pod to work on
- fencing the replica
- taking the snapshot
- unfencing the replica
Warning
A cluster already having a fenced instance cannot be snapshotted.
At the moment, this command can be used only for clusters having at least one
replica: that replica will be shut down by the fencing procedure to ensure the
snapshot to be consistent (cold backup). As the development of
declarative support for Kubernetes' VolumeSnapshot
API continues,
this limitation will be removed, allowing you to take online backups
as business continuity requires.
Important
Even if the procedure will shut down a replica, the primary Pod will not be involved.
The kubectl cnpg snapshot
command requires the cluster name:
kubectl cnpg snapshot cluster-example
waiting for cluster-example-3 to be fenced
waiting for VolumeSnapshot cluster-example-3-1682539624 to be ready to use
unfencing pod cluster-example-3
The VolumeSnapshot
resource will be created with an empty
VolumeSnapshotClass
reference. That resource is intended by be used by the
VolumeSnapshotClass
configured as default.
A specific VolumeSnapshotClass
can be requested via the -c
option:
kubectl cnpg snapshot cluster-example -c longhorn